Método
de las Dos Fases
Min z=2x1+3x2
S.A:
1/2x1+1/4x2 ≤4
x1+ 3x2
≥20
x1+
x2 =10
x1, x2 ≥0
FORMA AMPLIADA:
Min z=2x1+3x2
S.A:
1/2x1+1/4x2+x3
=4
x1+ 3x2
-x4+ a1
=20
x1+
x2
+
a2 =10
xi ≥0
i=1,..,4
ai ≥0 i=1,2
PRIMERA FASE:
F.O. Min w= a1+ a2
S.A:
1/2x1+1/4x2+x3
=4
x1+ 3x2
-x4+ a1
=20
x1+
x2
+
a2 =10
Primera fase:
X1=0,X2=0,X3=4,X4=0,a1=20,a2=10
w=30
|
X1
|
X2
|
X3
|
X4
|
A1
|
A2
|
Sol
|
wj-cj
|
0
|
0
|
0
|
0
|
-1
|
-1
|
0
|
zj-cj
|
-2
|
-3
|
0
|
0
|
0
|
0
|
0
|
X3
|
1/2
|
1/4
|
1
|
0
|
0
|
0
|
4
|
A1
|
1
|
3
|
0
|
-1
|
1
|
0
|
20
|
A2
|
1
|
1
|
0
|
0
|
0
|
1
|
10
|
Pivoteando
|
X1
|
X2
|
X3
|
X4
|
A1
|
A2
|
Sol
|
wj-cj
|
2
|
4
|
0
|
-1
|
0
|
0
|
0
|
zj-cj
|
-2
|
-3
|
0
|
0
|
0
|
0
|
0
|
X3
|
1/2
|
1/4
|
1
|
0
|
0
|
0
|
4
|
A1
|
1
|
3
|
0
|
-1
|
1
|
0
|
20
|
A2
|
1
|
1
|
0
|
0
|
0
|
1
|
10
|
|
X1
|
X2
|
X3
|
X4
|
A1
|
A2
|
Sol
|
wj-cj
|
2/3
|
0
|
0
|
1/3
|
-4/3
|
0
|
10/3
|
zj-cj
|
-1
|
0
|
0
|
-1
|
1
|
0
|
20
|
X3
|
5/12
|
0
|
1
|
1/12
|
-1/12
|
0
|
7/3
|
X2
|
1/3
|
1
|
0
|
-1/3
|
1/3
|
0
|
20/3
|
A2
|
2/3
|
0
|
0
|
1/3
|
-1/3
|
1
|
10/3
|
|
X1
|
X2
|
X3
|
X4
|
A1
|
A2
|
Sol
|
wj-cj
|
0
|
0
|
0
|
0
|
-1
|
-1
|
0
|
zj-cj
|
0
|
0
|
0
|
-1/2
|
1
|
0
|
25
|
X3
|
0
|
0
|
1
|
-1/8
|
-1/12
|
0
|
1/4
|
X2
|
0
|
1
|
0
|
-1/2
|
1/3
|
0
|
5
|
X1
|
1
|
0
|
0
|
½
|
-1/3
|
1
|
5
|
Segunda fase:
|
X1
|
X2
|
X3
|
X4
|
Sol
|
zj-cj
|
0
|
0
|
0
|
-1/2
|
25
|
X3
|
0
|
0
|
1
|
-1/8
|
1/4
|
X2
|
0
|
1
|
0
|
-1/2
|
5
|
X1
|
1
|
0
|
0
|
½
|
5
|
La tabla ya es optima
Solucion
X1=5,X2=5,X3=1/4,X4=0
Z=25
No hay comentarios:
Publicar un comentario